792 research outputs found

    Counselors\u27 Perceptions of Identity and Attitudinal Differences Between Counselors and Other Mental Health Professionals

    Get PDF
    A strong, distinctive professional identity is essential for the survival of mental health professions (Fall, Leviov, Jennings, & Eberts, 2000). Although the literature of the various mental health professions offers varying definitions of professional identity, differentiating their services from one another continues to be a problem (Remley & Herlihy, 2005). This uncertainty inhibits uniformity within professions, and causes confusion within the public as to what each mental health field actually does and does not do. Psychologists and social workers have dedicated years of effort to define their professions, providing extensive literature rooted in the history, values, beliefs, and the knowledge base of their respective professions (Gilbert, 1977; Gibelman, 1999; Westefeld, Altmaier, Pickett, & Dikes, 2004). Counseling, as the newest mental health profession, has had far less time for explicating its professional identity. Thus, the purpose of this quantitative survey was to examine counselors\u27 attitudes towards their professional identity and to identify the components of professional identity, which they believe contributed to their own identity as counselors. Counselors\u27 perceptions of differences between themselves and other mental health professions were also examined. Licensed counselors from select states within ACA\u27s southern region were asked to respond to the Survey of Counselor Professional Identity online survey. Respondents identified membership in counseling professional organizations, supervision during training, licensure, and advocacy for the profession as components that contributed to the development of their professional identity. These results support literature from psychology, social work, and counseling (Clark & Harden, 2000; Kaplan, 2006; Nelson & Jackson, 2003; Remley & Herlihy, 2005; Spruill & Benshoff, 1996; Swickert, 1997) that examines components contributing to the development of professional identity

    Density Dependent Refueling of Migratory Songbirds During Stopover Within an Urbanizing Coastal Landscape

    Get PDF
    Refueling performance is the primary currency of a successful migration as birds must maintain energy stores to achieve an optimal travel schedule. Migrating birds can anticipate heightened energy demand, not to mention increased uncertainty that energy demands will be satisfied, especially within an urbanizing landscape following long-distance flights. We tested the expectation that refueling performance of songbirds is reduced as densities increase at stopover sites in an urbanizing coastline of the Gulf of Mexico. We measured the density of migrating birds, their refueling performance, and arthropod abundance in two large tracts of contiguous forest paired with two small isolated patches embedded within residential settings throughout spring migration over the course of 2 years. Refueling performance declined with increasing migrant densities, even though the overall daily densities of birds stopping in these landscapes were relatively low and arthropod densities were low throughout. Habitat patch size alone did not account for differences in refueling performance, but smaller habitat patches more often concentrated migrants in higher densities where they experienced reduced refueling performance. We found support for density-dependent refueling performance during spring migration through a region where overall passage and stopover densities are low; suggesting that larger contiguous forest tracks within urban landscapes provide higher quality habitat for refueling and that effect is likely even more pronounced in landscapes within higher density migratory corridors. The nutritional challenges encountered during migration influence the overall pace of migration and changes in access to food resources due to increasing urbanization may ultimately impact optimal travel schedules

    Agricultural Contribution of the Non-Governmental Development Organization "National Food Program - PNA" in the Fight for household Food Security in the TAMBAKI Grouping in Ituri Province, Democratic Republic of Congo (DRC)

    Get PDF
    This article resulting from the synthesis of the work of the end of the university cycle aims to make a deep knowledge of effectiveness of contribution of the projects carried out by PNA in the promotion of food security in the Tambaki grouping. The farmers in this group had been selected for this study because they benefited from PNA interventions. For this purpose, the beneficiaries have proven in very concrete terms that the interventions of the National Food Program provide a practical and effective solution in improving the agricultural production system. This has allowed an increase in agricultural productivity. The government should redefine its policy to secure humanitarian workers who come to the aid of vulnerable populations

    Burn severity influences postfire CO2 exchange in Arctic tundra

    Get PDF
    Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 21 (2011): 477–489, doi:10.1890/10-0255.1.Burned landscapes present several challenges to quantifying landscape carbon balance. Fire scars are composed of a mosaic of patches that differ in burn severity, which may influence postfire carbon budgets through damage to vegetation and carbon stocks. We deployed three eddy covariance towers along a burn severity gradient (i.e., severely burned, moderately burned, and unburned tundra) to monitor postfire net ecosystem exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar in Alaska, USA, during the summer of 2008. Remote sensing data from the MODerate resolution Imaging Spectroradiometer (MODIS) was used to assess the spatial representativeness of the tower sites and parameterize a NEE model that was used to scale tower measurements to the landscape. The tower sites had similar vegetation and reflectance properties prior to the Anaktuvuk River fire and represented the range of surface conditions observed within the fire scar during the 2008 summer. Burn severity influenced a variety of surface properties, including residual organic matter, plant mortality, and vegetation recovery, which in turn determined postfire NEE. Carbon sequestration decreased with increased burn severity and was largely controlled by decreases in canopy photosynthesis. The MODIS two-band enhanced vegetation index (EVI2) monitored the seasonal course of surface greenness and explained 86% of the variability in NEE across the burn severity gradient. We demonstrate that understanding the relationship between burn severity, surface reflectance, and NEE is critical for estimating the overall postfire carbon balance of the Anaktuvuk River fire scar.This work was supported by NSF grants #0632139 (OPP-AON), #0808789 (OPP-ARCSS SGER), #0829285 (DEB-NEON SGER), and #0423385 (DEBLTER) to the Marine Biological Laboratory

    Using MODIS derived <i>f</i>PAR with ground based flux tower measurements to derive the light use efficiency for two Canadian peatlands

    Get PDF
    International audienceWe used satellite remote sensing data; fraction of photosynthetically active radiation absorbed by vegetation (fPAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with tower eddy covariance and meteorological measurements to characterise the light use efficiency parameter (?) variability and the maximum ? (?max) for two contrasting Canadian peatlands. Eight-day MODIS fPAR data were acquired for the Mer Bleue (2000 to 2003) and Western Peatland (2004). Flux tower eddy covariance and meteorological measurements were integrated to the same eight-day time stamps as the MODIS fPAR data. A light use efficiency model: GPP=? * APAR (where GPP is Gross Primary Productivity and APAR is absorbed photosynthetically active radiation) was used to calculated ?. The ?max value for each year (2000 to 2003) at the Mer Bleue bog ranged from 0.58 g C MJ?1 to 0.78 g C MJ?1 and was 0.91 g C MJ?1 in 2004, for the Western Peatland. The average growing season ? for the Mer Bleue bog for the four year period was 0.35 g C MJ?1 and for the Western Peatland in 2004 was 0.57 g C MJ?1. The average snow free period ? for the Mer Bleue bog over the four year period was 0.27 g C MJ?1 and for the Western Peatland in 2004 was 0.39 g C MJ?1. Using the light use efficiency method we calculated the ?max and the annual variability in ? for two Canadian peatlands. We determined that temperature was a growth-limiting factor at both sites Vapour Pressure Deficit (VPD) however was not. MODIS fPAR is a useful tool for the characterization of ? at flux tower sites

    Relationship between ecosystem productivity and photosynthetically-active radiation for northern peatlands

    Get PDF
    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = α PPFD Pmax/(α PPFD + Pmax) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = β PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = −2.0μmol m−2s−1 for bogs and −2.7 μmol m−2s−1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 μmol m−2s−1 for bogs and 10.8 μmol m−2s−1 for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = −2.4 μmol m−2s−1) and NEE rates (α = 0.020 and Pmax = 9.2μmol m−2s−1) than the upland ecosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5–50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils

    Insights into the Kinetics of Supramolecular Comonomer Incorporation in Water

    Get PDF
    Multicomponent supramolecular polymers are a versatile platform to prepare functional architectures, but a few studies have been devoted to investigate their noncovalent synthesis. Here, we study supramolecular copolymerizations by examining the mechanism and time scales associated with the incorporation of new monomers in benzene-1,3,5-tricarboxamide (BTA)-based supramolecular polymers. The BTA molecules in this study all contain three tetra(ethylene glycol) chains at the periphery for water solubility but differ in their alkyl chains that feature either 10, 12 or 13 methylene units. C(10)BTA does not form ordered supramolecular assemblies, whereas C(12)BTA and C(13)BTA both form high aspect ratio supramolecular polymers. First, we illustrate that C(10)BTA can mix into the supramolecular polymers based on either C(12)BTA or C(13)BTA by comparing the temperature response of the equilibrated mixtures to the temperature response of the individual components in water. Subsequently, we mix C(10)BTA with the polymers and follow the copolymerization over time with UV spectroscopy and hydrogen/deuterium exchange mass spectrometry experiments. Interestingly, the time scales obtained in both experiments reveal significant differences in the rates of copolymerization. Coarse-grained simulations are used to study the incorporation pathway and kinetics of the C(10)BTA monomers into the different polymers. The results demonstrate that the kinetic stability of the host supramolecular polymer controls the rate at which new monomers can enter the existing supramolecular polymers
    • …
    corecore